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The duality relation is derived for a vertex model on the triangular lattice. 
Vertex configurations are limited to the 32 that have an odd number of 
incoming arrows, and vertex energies are invariant to rotations of ~r/3 
and reversal of all arrows. Special cases of the model include the triangular 
Ising model and Baxter's three-spin model, for each of which the duality 
relation gives the critical temperature. 
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1. I N T R O D U C T I O N  

A major  recent advance in statistical mechanics was achieved with Baxter 's  
solution o f  the eight-vertex model.  C1) The importance o f  the model  rests on 
several features, but  specifically on its considerable generality and on the 
variety of  phase transit ion behavior  exhibited. Special cases o f  the eight- 
vertex (or 8-V) model  include the dimer, zero-field Ising, " ice ,"  F, and K D P  
models- -a l l  on the two-dimensional  square lattice. A n  unexpected proper ty  
o f  the general 8-V model  was the cont inuous dependence o f  its critical ex- 
ponents  on the energy parameters  o f  the model.  The equivalence o f  t h e "  zero- 
field" 8-V model  and an Ising model  with two- and four -body interactions (2) 
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has been useful in carrying over to the former techniques of analysis most 
naturally expressed in terms of spin variables. 

Inasmuch as statistical properties of lattice systems can depend qualita- 
tively as well as quantitatively on the geometry of the lattice, with the same 
dimensionality, it is natural to inquire into the properties o f "ve r t ex  models" 
on two-dimensional lattices other than the square lattice. 

In general, a vertex model is a lattice system for which each edge has 
available to it two possible states--for example, the two possible directions 
of an arrow residing on that edge. (a~ The models had their origin in the con- 
figurational studies of ice and other hydrogen-bonded solids. The general 
vertex model for any lattice would permit different energies for each of the 2 c 
possible configurations at each vertex, c being the coordination number of  
the lattice. Fundamental simplifications appear if the allowed configurations 
are restricted to those for which the parity of the number of "incoming 
arrows" at each vertex is specified. Hence the square lattice eight-vertex 
model permits only an even number of incoming arrows at each vertex, 
while t h e "  icelike" models are even more restricted to precisely two incoming 
arrows. Explicit solution in the 8-V case has been possible only with a dif- 
ferent additional restraint, namely that the vertex energies be invariant 
under reversal of all arrows--the "zero-field" condition. 

Wu (4~ has studied the general 8-V model on the hexagonal lattice and 
has shown that its partition function can be transformed to that of the Ising 
model on the hexagonal lattice, in a magnetic field. Explicit computation 
of the partition function was possible only when the parity of the number of 
incoming arrows has one value for one sublattice and the other value for the 
other sublattice--a condition equivalent to zero magnetic field in the Ising 
transcription. In the more general case the question of the existence and 
location of any phase transition was discussed with the help of the Yang-Lee 
theorem when the equivalent Ising system was ferromagnetic. 

Two studies have appeared of vertex models defined on the triangular 
lattice, (5,6~ both restricted to an " icel ike"  condition of precisely three (i.e., 
half of the coordination number) incoming arrows at each vertex. Baxter C5~ 
divided the 20 possible vertex energies into three energy classes such that 
within any one class the configurations are transformed among themselves 
by arrow reversal or rotations of ~r/3. If the vertex weights satisfied a special 
constraint (i.e., at a special temperature), the "ansatz"  approach yielded a 
dominant eigenvector of the transfer matrix. Kelland (6~ showed that a solu- 
tion may also be obtained (at all temperatures) if the two larger energy classes 
are assigned the same energy. 

In the present paper we generalize the triangular lattice vertex model to 
allow at each vertex all 32 configurations with an odd number of incoming 
arrows. It will be seen that invariance to arrow reversal and rotations adds 
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a fourth energy class (vertices with one or five incoming arrows) to the three 
introduced by Baxter. (5~ Evaluation of the partition function is not attempted, 
but it is shown that the general problem (with four energy classes) is self- 
dual and the self-dual temperature is determined using the method of 
Wegner. (7~ It is shown that special cases of  the model include the zero-field 
Ising model and Baxter's three-spin model, (8~ both on the triangular lattice. 

2. THE MODEL AND ITS ISING EQUIVALENT 

Figure 1 shows the 32 possible arrow configurations, already divided 
into eight classes. Within a class the configurations are transformed among 
themselves by the combined operations of  rotation by =/3 and arrow reversal. 
There is another way of accomplishing the same division through t h e "  bond"  
representation (3~ suggested also in Fig. 1. Using the single member  of class 1 
as a "bas is ,"  a vertex configuration can be specified by drawing a bond on 
each edge whose arrow direction differs from that of  the basis. The bond 
description shown at the top of each class of arrow configurations corresponds 
to the first member  of the class. Successive members of  each class correspond 
to all distinct rotated versions of  the one bond diagram shown. The further 
restriction which we shall impose is that the vertex energies be separately 

I 2 5 4 5 6 7 8 

Fig. 1. Vertex configurations. Only the incoming arrows are shown in the lower portion 
of the figure. The "bond diagrams" at the top of each class of configurations refer to the 
one configuration of class 1 as basis. 
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invariant to rotations of  7r/3 or reversal of  all arrows. The effect of  this further 
restriction is the joining of classes j and 9-j of  Fig. 1 into one class. There 
are thus four energy parameters in our model, El, E2, Ea, and E4. 

Just as in the square lattice case, (2~ a one-to-two correspondence can be 
established between the bond configurations of our model and the spin-�89 
configurations on the (topological) dual lattice--which in this case is the 
hexagonal lattice. The correspondence (using the bond description of the 
vertex model) is that a bond separates unlike spins while an edge without 
a bond separates like spins. Clearly there are two spin configurations satis- 
fying this rule for any vertex configuration, since there must be an even 
number  of bonds around each vertex. And in turn there is one vertex 
configuration for every bond " g r a p h "  consisting of sets of  closed polygons 
drawn on the triangular lattice. 

We now propose the following spin Hamiltonian for the hexagonal 
Ising spin system: 

H = - J 0 -  J, J:  (1) 
2A 2 B  , 4 

The spin variables a and a '  (taking values + 1) belong to sublattice A and r and 
r '  belong to sublattice B. The summations ~2a and ~2B are over next-nearest 
neighbors of  the hexagonal lattice (or nearest neighbors of a sublattice), 
while ~r  and ~r '  are over sets of four spins contained within any face of the 
hexagonal lattice. The coupling constant Jr applies to four successive spins 
(proceeding around a hexagon) and Jr' applies to four spins at the corner of  a 
rectangle (contained in a hexagon). See Fig. 2. For each hexagonal face of 
the lattice there are thus six terms in ~r  and three terms in ~2a, ~2~, and ~r ' .  
It  should be noticed that this Hamiltonian is separately invariant to spin 
reversal on either sublattice of the hexagonal lattice. 

We find the following correspondence between the vertex energies E, 
and the proposed spin coupling constants: 

E1 = - J 0  - 6J2 - 6J,  - 3J, ' ,  E2 = - J 0  - 2J2 + 2Jr + J , '  

Ea = - J o  + 2/= - 2 / ,  + J4', E,  = - J 0  + 2/2 + 2 / ,  - 3J, '  (2) 

(a)  (b) (c )  
Fig. 2. Interactions within a face of the hexagonal lattice. (a) Each heavy line stands for 

an interaction J2. (b) One of six interactions J4. (c) One of three interactions J4'. 
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or conversely 

Jo --- - ~ ( E ~  + 6E2 + 6E3 + 3E~), 
J4 = ~-~(-E~ + 2E2 -- 2Ea + E4), 

J2 = fia6(-E~ - 2E2 + 2E3 + E4) 
j 4 t  ~ 1 -f-a(-E~ + 2E2 + 2Ea - 3E4) 

(3) 

That the spin coupling constants so defined are in fact independent is verified 
by the nonvanishing of the determinant of coefficients of either (2) or (3). 

3. D U A L  T R A N S F O R M A T I O N  

General discussions of the dual transformation have been given by 
Merlini and Gruber (~ and by Wegner. ~7> First we notice that the energy h 
of  the six spins around any hexagonal face of  the lattice may be expressed 
in terms of the four "quantum numbers"  xl ,  x2, Yl, and Y2 as 

h = -J2(x~ + x2 + x~x~ + y~ + Y2 + Y~Y2) 

-J4(xly2 + x2yl + xlyly2 + x2yly2 + xlylY2 + x2yly2) 

-J~'(xly~ + x2y2 + x~x2y~y2) (4) 

and the total energy H is given by a summation of  like expressions over all 
hexagonal faces. We have here discarded the irrelevant constant Jo and have 
defined xz ..... Y2 as in Fig. 3. Each of these four quantum numbers is thus a 
product of  two spins from the same sublattice and takes values _+ 1. They 
may be imagined to reside at the midpoints of the lines joining the pairs of  
spins whose products define them. These quantum numbers are not, however, 
all independent variables, as there are constraints governing their possible 
values. 

Wegner (7~ has shown how such variables may be employed to effect 
a dual transformation--i.e.,  to show the partition function of the original 
lattice system to be equal (up to an analytic factor) to that of another lattice 
system. An advantage of Wegner's approach is a direct transformation of the 

..~t 
I 

Xt =ETO" 

O._tl t O_U O r __ X2= (IT 

(3- I 

Fig. 3. "Quantum numbers" x~, x2, y~, Y2. 
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triangular nearest-neighbor Ising lattice to itself (at a different temperature), 
without the usual intermediate passage through the hexagonal lattice. 

The trick for the present problem is to notice that each sublattice of the 
hexagonal lattice is by itself a triangular lattice. Regarding the spin variables 
r on the B sublattice as constant parameters, we first effect Wegner's trans- 
formation [Eq. (3.18) of Ref. 7] of the spins ~ on the A sublattice. We obtain 
the result 

~o*(+, + , y )  = -~[o4+,+,y) + o~(+, - , y )  + o 4 - ,  + , y )  + o 4 - ,  - , y ) ]  

o ; (+ ,  - , y )  = ~ D ( + ,  + , y )  - ~ (+ ,  - , y )  + o~(-, + , y )  - ~ ( - ,  - , y ) ]  

o0*(--, + ,  y) = �89 + ,  y) + o)(+, --, y) -- o~(--, + ,  y) -- o)(--, --,  y)] 

oJ*(-, - ,  y) = 1[~o(+, + ,  y) - oJ(+, - ,  y) - oJ( - ,  + ,  y) + co(- ,  - ,  y)] 

(5) 

Here co(x1, x2, yl ,  Y2) = exp[- f lh(x l ,  x2, yl ,  Y2)] is the Boltzmann weight 
factor at reciprocal temperature ~, and y is an abbreviation for (y, ,  Y2). 
The arguments x** and x2* of the transformed weights co*(x**, x2*, Yl, Y2) 
are products of pairs of new spins ~* residing on the B sublattice and the 
quantum numbers x~* may be assigned the same locations as y~. The weight 
factors ~o * =  ~o*(xz*, x2*,yl ,y2)  for this new lattice system (the "half- 
t ransformed" lattice) are defined by Eqs. (5). 

We now repeat the process, except this time we keep the spins e* fixed 
and transform the spin variables r. If Eqs. (5) are expressed by 

to+(x*, y) = Axto(x, y) (6) 

the result of the second transformation may be written as 

to*(x*, y*) = Auo;(x*, y) (7) 

where Av is the same matrix as Ax but operates on o;(x*, y) as a function 
of the y variables with the x* variables fixed. 

Now the new quantum numbers Yl* and y2* are products of pairs of  
spins r* on the A sublattice, and so the y~* reside at the original sites of the 
x,. Thus the spin system at temperature/3 has been transformed into itself 
at a new temperature/3* defined implicitly by 

to* = Ay @ Axto (8) 

where A~ | A~ is a 16 x 16 matrix. Inasmuch as there are only four distinct 
energy states, however [see Eqs. (2)], we can condense the above equation to 

(11 c o 2 * / =  , 1 2 - 2  - 1 / ] ~  / 
o)a* | ~ - 2  2 (9) 
a~4*/ --2 --2 3 / \  o ~ /  
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with col = ~o(+, + ,  + ,  +),oJz = co(+, + ,  + ,  -) ,coa = co(+, , , - ) , a n d  

co, = co(+, - ,  + ,  - ) ,  or more briefly by 

co* = Bto (10) 

where to is now a four-component vector as in Eq. (9). 
There will be a self-dual temperature, i.e., co* = co, if B has a physically 

realizable eigenvector corresponding to eigenvalue one. In fact, one is a triply 
degenerate eigenvalue of B, corresponding to the invariant subspace 

coz = 2c~ + 2coa + co, (ll) 

This equation is our principal result and defines the self-dual temperature 
when there is one. We now examine some specific cases of the equation. 

4. APPLICATIONS 

Using Eqs. (2) and K2 = 4/3J2, K~ = 4flJ~, and K~' = 4r we may 
rewrite the self-duality equation as 

sinh(K2 + K~) = [exp(-K4 ' ) l [exp( -K2)  + exp(-K~)]  (12) 

There are some interesting special cases of this equation. The simplest 
is K~ = K4' = 0, under which conditions Eq. (12) reduces to eK2 = 3, the 
equation for the critical point of the triangular lattice. When the four-body 
terms vanish, the spin system decouples into two nearest-neighbor Ising 
lattices as with the spin analog of the square-lattice 8-V model. In the present 
case, since the decoupled lattices are triangular, there is no transition unless 
J2 > 0 (ferromagnetic couplings). 

Since Eq. (12) is invariant against the exchange of/(2 and K4, the same 
self-dual condition exp(K~) = 3 applies if K2 = K4' = 0 and the same re- 
quirement holds that K~ be positive for any phase transition. 

On the other hand, i f / (2  = K4 = 0, there is no finite solution to Eq. 
(12). This absence of any possibility of critical phenomena can be understood 
as a consequence of the independence of the contribution of  each hexagonal 
face to the total energy if J2 = J4 = 0. As indicated in Fig. 4, the entire 

Fig. 4. Special  case K2 = K4 = 0. E a c h  h e x a g o n a l  
face becomes  independen t .  

S 6 
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�9 A A 

. ABc 

d3 

Fig. 5. Partial trace over spins of AA (with three-spin interactions) yields hexagonal 
lattice Asc with interactions as shown in Fig. 2. 

lattice may be constructed, one hexagonal face at a time, with the addition 
of two spins required to complete each face. Labeling those two spins as 
and a6, and those already assigned values cr 1 .... , cry, the contribution from that 
hexagonal face to the energy is 

= -J~'{[1 + tscrs][1 + t6cr6] - i} 

vCkere t5 = ala2cr4 and t6 = alcr3a4. Clearly the choice cr~ = h for i = 5 and 
6 gives energy -3J~ ' ,  while the three other choices each gives energy +J4' .  
Thus the partition function (neglecting edge effects) is simply 

Z = [3 exp(-/3J~')  + exp(+3flJ4')]N/2 
where N is the total number of  spins. 

The final correspondence we domonstrate is with Baxter's three-spin 
model on the triangular lattice, where the Hamiltonian is 

/-/3 = - J 3  ~ aa 'a" (13) 
8 

where ~s is over all triangular faces. Now, a finite portion A of the triangular 
lattice may be decomposed as A = A A w ABe, AA containing those sites of  
the A sublattice and ABe the rest of  the sites. Since the spins ~,~ of A A do not 
interact with each other, it is possible to effect a "part ia l  trace"(l~ over the 
spins ~A to yield an equivalent system of interacting spins on ABe--which is 
the hexagonal lattice (see Fig. 5). 2 An application of the partial trace tech- 
nique of Gruber  and Merlini C1~ quickly shows what many-body interactions 
exist between the spins of  ABc. 

In the first place the interactions are limited to even-order interactions 
(since the interactions of  the original lattice system were all of  the same 
par i ty--odd) .  Second, the interactions are restricted to spins occupying some 
subset X of some hexagonal face A (Fig. 5) of ABc (the range of the interactions 

2 An initial use of this approach was attributed by Merlini (11~ to F. Wegner. 
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f rom the spin aA originally at the center o f  A). Finally, for X to correspond 
to a nonvanishing interaction it must  be expressible as a product  of  an even 
number  o f  edges D~ of  A. Here D~ is a set of  two neighboring points and 
" p r o d u c t "  means the symmetric difference: 

D~Dj = (Di LgDj) - (D~ n D~) 

N o w  it is easily learned that  the only subsets X meeting these restrictions are 
precisely those illustrated in Fig. 2. Moreover ,  using the explicit formulas 
for the nonvanishing interactions in Ref. 10, it is found that the hexagonal  
system ABe corresponding to the three-spin model has the full symmetry  

I cosh 6J3 (14) 
J2 = J4 = J4' = 16 cosh 2 J  a 

Finally, t ransforming back to the vertex representation by way of  Eqs. (2), 
we find the vertex energies equivalent to the three-spin model  to be 

E2 = E3 = E~ = E1 + 16J2 (15) 

Returning to the general 32-V model,  with four  energy classes, we can 
make the assertion that  the self-duality condit ion (12) locates the critical 
temperature o f  the m o d e l - - i f  there is a unique critical point. There is the 
possibility o f  multiple transitions, however, and so we withold any such state- 
ment about  critical temperatures until that possibility has been examined. (12~ 
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